Connecting Phytoplankton Size to Export Flux in the Global Ocean

Colleen Mouw¹, Audrey Barnett¹ Galen McKinley² and Darren Pilcher²

¹Michigan Tech University ²University of Wisconsin-Madison

Goal

 Improve understanding of how phytoplankton size structure controls particle export and remineralization.

Background

- Work to date has been able to capture site-to-site variability, but have difficulty in capturing the variability at specific sites.
- Dunne et al. 2005 suggests biomass controls 59% of the variance in export flux, while size structure is the next most important control, explaining 28% of the variance.
- Guidi et al. 2009 suggest that phytoplankton composition explained 68% of flux at 400m.

Now with satellite estimates of phytoplankton size structure, can we gain a greater understanding of the relative contribution of phytoplankton size to export flux?

Outline

- Phytoplankton Size and Satellite Retrievals
- Data Mining
 - Global
 - Regional
 - Time series
 - Connection to satellite estimated cell size distribution
- Working toward mechanistic understanding
 - A work in progress

Cullen et al. (2002); Based on Margalef (1978)

Ecological Importance of Cell Size

CO2 phytoplankton fentilation (upwelling) phytoplankton Bacteria Surface ocean Deep ocean Deep consumers Bacteria Sea floor

Chisholm, 2000

Small cells:

- recycled within euphotic zone
- utilizing regenerated nutrients
- Prefer stratified high light conditions

Event-Scale Forcing —>
Succession

Potential for Production and Export ->

Large cells:

- · sink out of the euphotic zone
- utilize new nutrients efficiently
- Prefer turbulent, low light conditions

Hierarchical Classification of Satellite Phytoplankton Size Class Detection

Optical Importance of Cell Size

Despite the physiological and taxonomic variability, variation in spectral shape can be defined by changes in the dominant size class.

$$a_{ph}^*(\lambda) = [(1-S_{fm}) \times a_{pico}^*(\lambda)] + [S_{fm} \times a_{micro}^*(\lambda)]$$

Effect of Cell Size on $R_{rs}(\lambda)$

 S_{fm} varying Constant [ChI] = 0.5 mg m⁻³ Constant $a_{CDM}(443) = 0.002 \text{ m}^{-1}$

Magnitude shift!

Phytoplankton Size Distribution

Contribution of Size & [ChI] to $R_{rs}(\lambda)$

Full Variability

Mouw et al., 2012

Guidi et al. 2009 $F_z = F_{100} (z/100)^-$

Export and Phytoplankton

- High latitudes (larger cells dominate)
 - High export efficiency but low transfer efficiency
 - Exported organic material is relatively liable and prone to remineralization in the upper mesopelagic
- Low latitudes (smaller cells dominate)
 - Low export efficiency but high transfer efficiency
 - The effective microbial loop ensures much of the organic matter is recycled and thus refractory before it is exported resulting in comparatively less degradation at mesopelagic depths

Export Flux & Transfer Efficiency

Export Flux

$$F_{z-z_e} = f \ NPP(ae^{-\frac{1}{f}(z-z_e)} + (1-a))$$
 Lima et al. 2014

f = fraction of exported vertically integrated NPP

 α = labile fraction of POC

 λ = remineralization length scale

 z_{o} = export depth

Transfer Efficiency

$$TE_{z-z_e} = \frac{F_{z-z_e}}{F_z}$$

Buesseler & Boyd 2009

The ratio of export to production at the based of the euphotic zone or mixed layer depth, whichever is deeper

Data Distribution

Prior to satellite record

Data Distribution

Prior + coincident with satellite record

(41%)

(26%)

BATS = 11% HOT = 6% CARIACO = 21%

Data Distribution

Size of circle indicates the amount of data present at a given site Color or circle indicates depths of observation

light blue: <= 100 m

medium blue: >100 m & <=1000 m

dark blue: > 1000 m

- 234-Thorium
- Sediment Trap
- Coincident with satellite

Latitudinal Distribution

Depth Distribution

Seasonal Distribution

NPP Seasonal Variability

NPP Seasonal Variability 0.1 0.2 0.5 0.6 0.7 0.8 0.9 0.2 0.4 0.7 0.9 90 500 70 1000 50 1500 30 2000 (E) 2500 計 3000 3500 10 10-10--30 4000 4500 -50 5000 0.00 - 0.30 0.00 - 0.30 -70 0.30 - 0.65 0.30 - 0.655500 0.65 - 1.00 0.65 - 1.00 -90 0 6000 0 500 1000 500 1500 1500 2000 1000 2000 2500 **Number of measurements Number of measurements**

S_{fm} Seasonal Variability

NPP and S_{fm} Seasonal Variability

Global Seasonality

$$F_{z-z_e} = f NPP(ae^{-\frac{1}{f}(z-z_e)} + (1-a))$$

Export Flux, NPP and Size

$$F_{z-z_e} = f \ NPP(ae^{-\frac{1}{f}(z-z_e)} + (1-a))$$

Sediment trap & Thorium

Export Flux, NPP and Size

$$F_{z-z_e} = f NPP(ae^{-\frac{1}{f}(z-z_e)} + (1-a))$$

Sediment trap & Thorium

Export flux ratio Winter 0.9 Spring Summer Fall Annual 0.2 0.1 Low PP Low S_{fm} Mid PP Low S_{fm} Mid PP High S_{fm} High PP High S_{fm} Global Remineralization length scale 100 200 (E) 300 √1 400 500 600 700 Low PP Low S_{fm} Mid PP Mid PP High PP Global High S_{fm} Low S_{fm} High S_{fm}

Sediment trap only

Flux transmission below Ez

 $(T_{100} = POC flux 100m below Ez/POC flux at Ez)$

Winter Spring

Fall

Regional Seasonality

NW Pacific - Regional Seasonal

NW Pacific Regional Seasonality

NW Pacific – Regional Seasonality

Winter Spring Summer

Annual

NW Pacific – Regional Seasonality

BATS – Regional Seasonality

BATS – Regional Seasonality

Regional Seasonality

Regional Seasonality

BATS

[32 N, 64 W]

3 day median trap deployment

NW Pacific

[40 N, 165 E]

17 day median trap deployment

NW Pacific

[50 N, 165 E]

17 day median trap deployment

Time Series Export

Conclusions

- Shallow observations are needed to capture phytoplankton size impact. Sediment traps alone due not reveal size differences.
- Seasonal variability in export flux and remineralization length scales with evident size impacts are observed.
- Depth resolution and/or parameter variability make the discrimination of interannual, sitespecific size impacts difficult to discern (but we'll keep trying)
- A step forward, but much yet to consider.

Acknowledgements

- Audrey Barnett, John Trocha, Brice Grunert (Michigan Tech U.)
- Galen McKinley, Darren Pilcher, Haidi Chen
 (U. Wisconsin-Madison)
- Jim Yoder, Scott Doney, Ivan Lima (WHOI)
- SeaWiFS, MODIS: NASA Ocean Biology Processing Group
- AVHRR SST: NASA JPL PO.DAAC
- Mixed layer Depth Climatology: Ifremer

